New research findings from the at 嘿嘿视频 Medical Center could provide additional clues for future treatment targets to delay Alzheimer鈥檚 disease and related dementias. This is according to the group鈥檚 latest findings presented at the , held July 24 to July 28, 2016, in Toronto.
Alzheimer鈥檚 disease, the most common form of dementia, is an incurable, degenerative disease that causes problems with memory, thinking, and behavior. Alzheimer鈥檚 and other dementias affect 47 million people worldwide and 5.3 million Americans, numbers that are expected to triple by 2050, according to the Alzheimer鈥檚 Association. At this time, there is no cure鈥攂ut research such as that presented at the AAIC meeting is aimed at finding ways to delay symptom onset and improve quality of life for patients, and may ultimately pave the way for more treatments.
New Target for Prevention
New research in mice by 嘿嘿视频 researchers may pave the way for clinical trials to test medications known as carbonic anhydrase inhibitors (CAIs) as potential treatments for Alzheimer鈥檚, targeting the mechanism thought to be behind the neural and vascular death often associated with the disease.
It is now widely accepted that mitochondrial dysfunction鈥攁 destruction of the organelles that regulate energy metabolism and death in a cell鈥攖riggers the progression of the neuronal and vascular death seen in many Alzheimer鈥檚 patients. Mitochondrial dysfunction is caused by a buildup of amyloid beta proteins, which, in turn leads to plaque accumulation in the brain.
In their study, 嘿嘿视频 researchers found that CAI medications, previously approved by the U.S. Food and Drug Administration (FDA) for other conditions like glaucoma, target the mechanism behind this dysfunction.
鈥淭herapies aimed at preventing mitochondrial failure may represent promising new strategies as we search for a cure for this devastating disease,鈥 says lead study author Silvia Fossati, PhD, an assistant professor of neurology and psychiatry at 嘿嘿视频.
For the study, Fossati and colleagues looked at two FDA-approved CAIs: methazolamide and acetazolamide. For the first time, these medications were tested in cell cultures and mouse models that showed a buildup of amyloid beta protein in the brain, known as amyloidosis. In the mice with amyloidosis, the researchers showed for the first time a positive effect of these drugs on memory, amyloid deposition, and activation of enzymes called caspases that drive cell death mechanisms in the brain.
The researchers believe that the protective effects of these compounds may be due to their prevention of mitochondrial dysfunction, as well as their known effects as activators of cerebral blood flow, which induce more efficient elimination of amyloid beta proteins from the brain. Further studies aim to test similar compounds in animal models, and since these drugs are already FDA approved, Fossati adds that future research may involve the planning of a fast-track clinical trial in early stage Alzheimer鈥檚 or mild cognitive impaired (MCI) patients.
Immunotherapy Used to Reduce Levels of Amyloid Beta Proteins
Reducing amyloid beta proteins through immunotherapy has shown benefits in previous mice studies. However, new research led by Martin Sadowski, MD, an associate professor of neurology, psychiatry, and biochemistry and molecular pharmacology at 嘿嘿视频, suggests that more studies are needed to reduce potential risks associated with this possible approach to treatment.
Genetic variants of apolipoprotein E (APOE), a specific gene mapped to chromosome 19, is among the most significant factors predicting susceptibility to Alzheimer鈥檚 disease caused by buildup of amyloid beta plaques. There are three variants of APOE: APOE 蔚2, APOE 蔚3, and APOE 蔚4. Previous research has shown that variant APOE 蔚4 significantly increases Alzheimer鈥檚 disease risk, while APOE 蔚2 reduces risk for the disease; the impact of APOE 蔚3 is less known. An estimated 20 percent of people carry the risk-increasing APOE 蔚4 genetic variant.
Immunotherapy has been studied to target amyloid beta plaque buildup, but previous studies have shown that APOE 蔚4 subjects are prone to develop specific adverse effects called amyloid related imaging abnormalities (ARIA), which include microhemorrhages, or bleeding of the brain, when given this treatment.
In the new study, Sadowski and colleagues examined the effect of amyloid beta immunotherapy in Alzheimer鈥檚 transgenic mice, engineered to have each of the three genetic variants of human APOE. They found a greater effect of immunotherapy on reducing the load of amyloid beta deposits in mice expressing the APOE 蔚4 variant than in mice expressing other APOE variants. Clearance of amyloid beta deposits was associated with increased activation of brain cells called microglia, which uptake and digest amyloid beta. Microglia activation was much greater in mice expressing the APOE 蔚4 variant than in mice expressing other APOE variants, which may cause harmful effect of stimulated microglia on the brain.
The researchers also discovered that in Alzheimer transgenic mice, APOE variants have different effects on amyloid beta deposition in the walls of brain vessels, with the APOE 蔚4 promoting deposition of amyloid beta in large vessels, while APOE 蔚2 lead to more amyloid beta deposition in the brain鈥檚 microvessels.
Immunotherapy cleared brain vessels of amyloid beta, but it was associated with increased incidence of brain bleeding. The greatest incidence of brain bleeds was noticed in APOE 蔚2 mice while the lowest was found in APOE 蔚3 mice.
These new findings provide previously unknown information that may aid in development of immunologic treatments for Alzheimer鈥檚.
鈥淥ur study identifies the previously underappreciated risk-promoting effect of APOE 蔚2 and the protective effect of APOE 蔚3 on the incidence of brain bleeding associated with amyloid beta immunization,鈥 says Sadowski. 鈥淭his is an important observation in a mouse model that may influence how immunotherapy treatments, such as vaccines, for Alzheimer鈥檚 are developed and one day tested in humans.鈥
Other 嘿嘿视频 presentations at AAIC 2016 include:
Outcomes for Alzheimer's Disease Preclinical Trials: What to Consider and How to Do It
Lead author:
State-dependent Alterations in CSF Abeta42 Levels in Cognitively-intact Elderly with Late Life Major Depression
Lead author:
Innate Immunity Stimulation Via Toll-like Receptor 9 As a Novel Therapeutic Approach in Alzheimers Disease
Lead author:
Disease Modifying Therapy by Infusion of an Anti-conformational Monoclonal Antibody in an A尾 and Tau 3xTg Mouse Model of Alzheimer鈥檚 Disease
Lead author:
Altered Protein Expression in Amyloid Plaques in Rapidly Progressive Alzheimer鈥檚 Disease
Lead author: Eleanor Drummond, PhD