The need to feel balanced drives the development of coordination between body and limbs as zebrafish larvae learn to swim, a new study finds.
, the study found that the developing fish rely on their vestibular organs鈥攖he equivalent of the human inner ear鈥攁s their sense of balance oversees improvements in coordination needed to remain horizontal. A level posture is preferred across evolution, say the study authors, as it helps animals to move, find food, and evade predators.
Led by researchers from NYU School of Medicine, the work focused on zebrafish larvae, which undergo their development while swimming in the water, venturing into their environment 3 to 30 days after fertilization, which is much earlier than a human fetus that continues to develop in the womb. This external development enabled researchers to watch larvae for changes in movement patterns that depend on brain circuits similar to those that enable human balance.
鈥淭he relationship between balance and movement is broken in rare diseases like developmental coordination disorder, and in ataxias, the movement problems that occur in patients with multiple sclerosis and in those who have had a stroke,鈥 says lead study investigator , assistant professor in the at NYU School of Medicine.
鈥淥ur hope is that the work in fish聽guides the future development of therapies for disorders caused by the brain鈥檚 mishandling of balance cues as it coordinates muscle groups,鈥 says Dr. Schoppik, also a member of 嘿嘿视频鈥檚 .
Balance Basics
Past studies have argued that fins evolved into the forelimbs of land animals, and that zebrafish pectoral fins may provide a useful model for the role of forelimbs in coordinated movement. Maturing humans learn to swing their arms and flex trunk muscles as they walk, which reduces angular momentum, or the tendency to pitch forward. However, the sensations that guide the development of this coordination are poorly understood.
One clue observed across evolution is that animals prefer to remain horizontal to satisfy a sense of balance and orientation to the world. On land, animals judge their orientation relative to gravity using many senses, including the feeling of how hard their feet are pressing on the ground, say the authors. The related biomechanics are more complex on land than underwater where, thanks to buoyancy, animals are more dependent on a single factor鈥攖heir vestibular sense鈥攖o guide improvements in coordination, researchers say.
The new study found that zebrafish larvae used upward-orienting body rotations together with lift-producing pectoral fin motions to climb in water. Researchers also observed that fish larvae became better able with age to remain level as they climbed by matching larger fin actions with smaller body movements. Younger fish were more likely to careen upward nose-first, like rockets do.
The research team also found that zebrafish, engineered to lack function in their utricular otoliths鈥攖he fish version of the balance system鈥攄id not get better with age at coordinating trunk and fin movements to achieve postural stability.
The study results also address the cerebellum, long established as a center for the coordination muscle movements, or motor coordination. The new work showed that zebrafish with disabled cerebellar function, instead of using lift-generating pectoral fins only while climbing, also use them as they try to dive. Cerebellar Purkinje cells in particular blocked pro-movement signals to rule out pectoral fin movements when they would clash with body movements.
鈥淥ur work shows that the fish brain uses information about balance to generate the right combination of muscle contractions to swim effectively,鈥 says study author David Ehrlich, PhD, a postdoctoral scholar in Dr. Schoppik鈥檚 lab. 鈥淣ow that we know these fish are capable of elegant coordination, we can measure brain activity to understand how and where coordinated movements are composed."
The study was funded by National Institute on Deafness and Communication Disorders grant DC017489 and the Hearing Health Foundation.
Media Inquiries
Greg Williams
Phone: 212-404-3500
gregory.williams@nyulangone.org